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This investigation is concerned with problems of the broad class of non- 

steady spatial irrotational flows of a compressible gas, which may be 
solved successfully by using the technique of tensor calculation in four- 
dimensional space. Under investigation are only certain general “intrinsic” 
properties of double waves, i.e. those properties which do not depend on 
special conditions of the motion, such as initial and boundary conditions. 

1. We shall assume that in the region of flow under consideration 

there are no strong discontinuities (shock-waves) and, also, neglecting 

the viscosity and the heat conductivity of the gas, we shall assume the 

motion to be isentropic; finally, in the equations of motion we shall 

omit outside forces (as is done, incidentally, usually in all typical 

problems of gasdynamics). Under these conditions it is the customary 

practice to limit the investigations to irrotational (potential) flows. 

We shall introduce the four-dimensional Euclidian space - the time R, 
being the fourth coordinate - which henceforth we shall call the space 

of the motion. In this space an orthogonal system of Cartesian coordi- 

nates will serve as a system of reference: 

where v” is an arbitrary constant with the dimension of a velocity and t 
is the time. 

‘lhereupon, starting with the three-dimensional velocity vector of the 

gas particles 2’ with components along the axes x1, x2, x3,which are equal 

to VI, V2’ v3, respectively, we shall introduce in this space of four- 
dimensional motion the four-dimensional field vector U, defined by the 

equations 
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1 

Wo if k= 1, 2, 3 
nk = 

v” = con&, if k=r, 
G.1) 

Using this field vector u the equation of continuity may be represent- 
in abbreviated tensor notation* as follows: 

where p(xL, x2> x3, x4) is the gas density. In this equation and in the 
other formulas, for which the orthogonal Cartesian coordinate system 
serves as a system of reference, the difference between the contra- and 
covariant vector components is purely formal: u’ = UK. Ihe necessity to 
differentiate them sharply arises from the moment we introduce general 
curvilinear coordinates (see Section 3 1. 

Emphasis is laid here upon the synxnetrical form of EQuation (1.2 ) 
with respect to all coordinates xk. In contradistinction, the structure 
of the three equations of motion for an isentropic compressible ideal 
gas, even after using the condition of irrotationality of the flow 

&@xj = &j/dxi (i, j = 1, 2, 3) (W 

is absolutely different with respect to time and the spatial coordinates 

~~(av~/a~4) + aqab= 0 (i = 1, 2,3) (1.4) 

where H is the “total enthalpyn 

(2.5) 

where c is the local sound velocity and K is the isentropic index, 

(v)” = 1 P 12 = v* vi 

Note that for steady flows the asymmetry of Equations (1.4) vanishes, 
because in this case dYi/t3x4 E 0. At the same time we obtain ixxnedi- 
ately the first integral of these equations in the form of Bernoulli’s 

* According to this notation, every expression in which any letter index 

appears twice - one time as a cont~avari~t (superior) and the second 
time as a covariant index (inferior) -‘is to be sumed over all the 
values OP this index. Let it be agreed that i, j = 1. 2, 2; whereas 
k, 1, s = 1. 2. 3, 4. 



equation, H = const, Under these conditions we may eliminate the density 
p from the equation of continuity (1.2) without much difficulty, arxiv- 
ing thereby at the known differential equation of steady flow 

(jf=; I 1 
(i = j) 

0 0 # i) 

It is necessary only to substitute in 
for the partial derivatives, so that the 
form* 

(1.6 f the covariant derivatives 
equation will assume a covariant 

2. fn the case of nonsteady flow the density, pressure, sound velo- 
city and other gasdynamic quantities will not be functions of tbe velo- 
city only. 3herefore, the study of flows which are not steady, requixes 
a quite substantial generalization of the vector space of the velocities 
~through the addition of a fourth component which would also depend on 
the density p (or on the pressure p or sound velocity c). Through that 
generalization, the equations of motion (1.4) may be made symmetrical. 
Indeed, every one of these three equations contains a corresponding de- 
rivative of the “total enthalpy” H. Therefore, it is clear that when in- 
troducing a new generalized ~four-d~~ns~o~a~} Euclidian vector space it 
is sufficient to assume fin right-angle Cartesian coordinates) 

a$$ = P 
(,k-_ I, 2, :%I 

\--H/V” (k = 4) 
(I&a) 

in order to obtain, instead of EZquations (1.3) and (1.41, the equivalent 
and already wholly synznetrical system of xelationships 

awm aw, -=- 
ax” axm (k,m-1, 2, 3, 4) (2.2) 

From these equations it folfows that the four-dimensional vector field 
w introduced here has a potential, whereas usually the velocity potential 

@IL x2* X3, x4) serves as a potential function of the flow 

wk = &&@d (k= i, 2, 3, 4) 

Now we may eliminate the density p from the e uation of continuity. 
Differentiating Equation (1.5 1 with respect to’ x 9 and taking into account 
(1.1) and (2.11, we find 

‘&en, eliminating from (1.2) and (2.4) the density p and its deri- 
vatives, we arrive at the equation 
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If we write this equation in an expanded form and introduce the velo- 
city potential +(r’, X2, x3, x4), then we shall immediately obtain the 

well-known nonlinear differential equation in terms of partial deriva- 
tives of the second order, by which are governed the very general poten- 
tial flows of a compressible gas. 

In order to obtain in due course a very important transformation of 
this equation, we shall note, first of all, that according to (1.1) and 
(2.1) we have 

where the tensor of the second rank r 
In in the chosen orthogonal Cartesian 

coordinate system (z?> is determined by the matrix 

10 0 0 

II~‘“II = I “0 :, y : 
00 0 0 

Introducing also the symmetric tensor 

(2.7) 

Equation (2.5) may be written in the particularly simple and short tensor 

form 
$?%?I aw?n - 0 

asi 
(2.9) 

Note that in the coordinate system chosen (xt) the component r44 = 0. 

In this way the tensor T ‘a, in distinction to Sj of (1.61, is not a 
simple unit tensor of the four-dimensional space of motion R, since its 
structure is more complicated. 

From this situation, particularly, stem th4 difficulties discussed at 
the very beginning (Section l), and here lies also the key to their solu- 
tion. 

3. We shall turn now from the rectilinear s stem of reference to an 
arbitrary system of curvilinear coordinates (X a 1; we shall denote the 
curvilinear coordinates by Greek indices. 

To accomplish this, we shall substitute everywhere, in strict 
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compliance with the known rule on the location of contra- and covariant 
indices in Equation (2.9), the partial derivatives with respect to the 
Cartesian coordinates a wl /d x1 by the covariant derivatives Vxt~~ . Thus, 
we obtain 

Thl*y7awp =O (T”P 3 c2 +P - UA u~) (3.1) 

Here 

where l?hlLv denotes the Christoffel symbol of the second order. 

4. Every solution w of Equation (2.9) or (3.1) may be interpreted as 
a mapping of the space of motion as a whole, or of any particular part 
of it, into some region of the four-dimensional Euclidian space V,, the 
radius vectors of which are determined by the vector field w. As seen, 
this space V, is a natural generalization of three-dimensional space of 
the ordinary hodograph. The space V, is usually called a generalized 
hodograph. 

The concept of the generalized hodograph permits the construction of 
the variety of types of flows which were discussed at the very beginning. 

It is generally accepted that a wave is called of the order q, or a 
q-wave, namely, in particular, a simple wave (q = 1 ), a double wave 
(q = 2) or a triple wave (q = 3), because the potential flow* of a com- 
pressible ideal isentropic gas may be mapped in the space of the general- 
ized hodograph onto the qth surface, namely onto a line, onto a surface 
proper or onto a hypersurface, respectively. 

It is clear that in all these cases we deal with a degenerate repre- 
sentation in the hodograph: some four-dimensional region of the motion 
space R, reflects onto the region Vn of the space of the generalized 
hodograph V, with the measure q < 4. Analytically this circumstance mani- 
fests itself by the fact that the functional determinant, or the Jacobian 
of the mapping functions w.(n’, x2, x3, x4), is identically equal to 
zero 1 a wI/a x1 ( = 0 (evidently only in the part of motion space which is 

* In an earlier paper (4) it was shown that in the case of simple non- 
steady waves the potential nature of the flow follows from its very 
definition. With respect to other q-waves, this property of flow 
potential is introduced, as a rule, as an additional condition for 
the simplification of the problem. 
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occupied by the considered q-wave). Also the matrix of the Jacobian is 

of rank q. 

Consequently, a q-wave may also be determined in the following way: 
it is a potential flow, whose vector field w has only q independent com- 

ponents wll (q < m = 4) in an orthogonal Cartesian system, out of m 
possible components. 

Note. It is recalled that the two first exact solutions of nonlinear 
equations of gasdynamics, that obtained in 1860 by Riemann [l I. and the 
other in 1907 by Prandtl and Meyer [2 1, belong to the above-mentioned 

spatial forms of flows. However, these solutions do not nearly exhaust 

the scope of the classes of motion considered here. The flows of the 
Prandtl and Meyer type form only a small subclass of simple wlrves; even 
in a very general interpretation, when both “Riemann invariants” are 

variable, these also represent a somewhat limited subclass of double 
waves. because they depend only on two variables: namely, on a spatial. 
for example x1 = X, and on a time variable, x4 3 v’t. 

In the course of recent years the study of various wave classes has 
undoubtedly progressed. The problem of simple waves in particular, on 
the basis of several recent papers [ 3-7 I, may be considered, in some 
respects, to be almost solved. Significant and interesting results are 

obtained also in the theory of double waves, steady [3,8 I and nonsteady 
[ 9-11 1. The triple waves are considered in [ 12 1. 

5. As noted above, the study of the general properties of double waves 
reduces basically to the analysis of the geometrical construction of the 
mapping of the physical space onto the surface of the corresponding de- 
generate hodograph. In the orthogonal coordinate systems (xk) and (1~~ = 
wI) this mapping is determined by some system of functions 

w, = w, (xl, x2, x3, x”) (m = 1, 2, 3. 4) (*?.I) 

with the condition that the rank of the matrix 11 a w,/a zk 11 is equal to 
two. From this condition it follows that the system (5.1) does not per- 
mit any single-valued transformation; to be more exact, to every point P 
of the hodo 
s 
E 

ace R, i z f 
raph of the double wave there corresponds in the physical 
I some surface II. On every such surface II, at all its points 

n , we have, by definition, w = const and, hence, wn = const, c = const, 
p = const, p = const. For the sake of simplicity, we shall call these 
surfaces “isod*amical surfaces”. 

In what follows we would also need, beside Equations (5.1), the para- 
metric hodograph equations of the double wave under consideration 

win = zu, (El, E”) (m = 1, 2, 3, 4) (5.2) 
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where the rank of the matrix IIJw,/a[*\l is equal to two. 

Note that the parameters 6' and r2 serve at the hodograph surface of 

the double wave considered, as the curvilinear coordinates ["(a = 1, 2) 

of the points P. Consequently, t1 and 5' may also be considered to be 

the parameters which determine the two-parameter family of the iso- 

dynamical surface. 

To simplify the investigation to follow it is convenient to introduce 

the Legendre function 

@)_Pw, -'p (xl, 52, 23, z") (5.3) 

whose total differential d@ on account of (2.3) does not contain differ- 

entials of the variables x". Then considering (5.2), we obtain 

d@ =~"$jw, =xm $$'dEa (5.4) 

From this equation it follows, first of all, that the Legendre func- 

tion for the double wave depends only on the variables 6" : 

CD = CD (Cl, E”) (5.5) 

and evidently, it also assumes a constant value on every isodynamical 

surface ll: secondly 

(5.6) 

It is significant here that, according to (5.5) and (5.21, the free 

terms and coefficients of this system of equations, linear with respect 

to variables x"', are functions of the parameters t1 and f2 only. Hence 

we have the following theorem: 

Theorem 1. Isodynamical surfaces form in the motion space R4( x” I the 

two-parameter family of surfaces II, determined by the system of two 

linear equations of first order (5.6). 

Further analysis of this system of equations shows that the geometrical 

form of the hodograph surface of double waves defines also the orienta- 

tion of the surfaces II. Indeed, the numerical values of the coefficients 

of these equations (5.6) define two vectors.K'(~)(~', 6') in the system 

of coordinates xR of the motion space R4: 

(5.7) 

which, because of Equations (5.6), are orthogonal to the investigated 
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plane II. But, on the other hand, taking into the consideration the form 
of these expressions as partial derivatives d #/d (” , it is clear that 
they form, in the hodograph space with the system of orthogonal Cartesian 
coordinates w”’ = wa, the components of two vectors, tangent at the point 
P of the hodograph surface corresponding to the coordinate line t1 or c2. 
Assuming further, for the purpose of simplification of the formulation 
of the final results, that in both systems of coordinates X~ and w’ the 
axes having the same numerical indices are parallel, we obtain the second 
theorem. 

Theorem 2. Every isodynamic plane II is orthogonal to the hodograph 
surface of a double wave at the corresponding point P of the hodograph. 

6. Based on the theorems obtained, we may, using the system of equa- 
tions (5.6), find an interesting analytic expression for the multiple- 
valued dependence of the variables x” on the curvilinear coordinates 5”. 
It is easily shown that one of the possible forms of this expression is 
the following system which contains two arbitrary parameters 71 and 4: 

where the contra- and covariant coordinates of the metric tensor of the 
hodograph surface satisfy the known relationships: 

(6.2) 

while the unit non-parallel vectors n(l)’ (cl, 5’) and trf2Jm (tJ’, e2> 
are situated on the corresponding isodynamic plane Il. In order to prove 
the validity of Formula (6.1), it is sufficient to show that the first 
term on its right-hand side identically satisfies the system of equations 
(6.2). Indeed 

7. In Section 5 were derived the general properties of double waves 
independent of the equations of gasdynamics. These geometrical properties 
are a direct consequence of the special kinematic conditions by which the 
cliss of irrotational (potential) double waves is defined. 

In the remainder of the investigation we use the equations of motion 
(2.91. Taking into consideration the parametric equations (5.2), we write 
the equation of motion in the form 
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which reveals the essential role of curvilinear coordinates [" (a = 1,2). 

We are interested here in the general "intrinsic" properties of double 
waves, i.e. the properties which do not depend on the special conditions 
of motion, that is, on the initial and boundary conditions. Keeping this 
in mind we shall try to express all the terms of Expression (7.1) in 
terms of functions of the curvilinear h~ograpb coordinates 5" of the 
double wave. First we shall do this with regard to the derivatives 
dr$e/dxl. Here we make use of Equations (5.6) again, differentiating 
both its parts with respect to zk: 

where Pm f'(e', c2; q, 4) according to (6.1). These equations may be 
represented in a more concise form 

if we designate by one symbol hap the covariant coordinates of the sym- 
metric tensor 

For every arbitrarily chosen value of index k, Formulas (7.2) repre- 
sent a system of two linear equations with two unknowns dCJP /a Xk. We 
shall denote by H aB the algebrai& addition hap. From the foregoing we 
have the known relations 

Using that expression, with the condition that h = 1 haal f 0, we may 
represent the solution of the system (7.2) in the form 

p = 1,2 
k = i, 2.3. 4 

Expressions (6.1) and (7.3) to (7.5) serve to eliminate effectively 
the variables zk from Equation (7.1). In this manner we arrive at the 
equation basic for the further investigation: 
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(7.6) 

But, taking into account (6.2), for the Christoffel symbol of the 
first order we obtain 

Using this expression, we readily find in Equation (7.7) in square 

brackets, among others, the expression which is reducible to the co- 

variant derivative 

Taking into consideration the relationships obtained above, we can 
now state the basic equation (7.6) in its final form 

It is essential here that the values of the parameters 9 and 4, which 
appear in this equation, are absolutely arbitrary. 'Ibis shows that Equa- 
tion (7.8) is equivalent to the system of three independent differential 
equations, the first of which may be written 

(7.9) 

while two others are obtained by replacing the covariant derivative 

vrs@ by n(l) na2w,/a~Ya~S ma 7~(~)“a~u~,/a~~a~~ respectively. 

In the very structure of the equations of this system and in their 
physical interpretatioti an essential difference is easily noticeable. The 
last two of the given equations deal exclusively with the geometrical 
structure of the hodograph of a double wave (we shall recall that 7rtljB 
anda 2j" 

1 

denote unit vectors, orthogonal to the surface of this hoclo- 
graph . For a detailed study of the flows themselves and of their 
particular features defined by the Lgendre function @, it is necessary 
to turn to Equation (7.9). However, the role of the differential equa- 
tion (7.9) in the theory of double waves is not confined-to this alone: 
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using it, we may, among others, easily show some interesting, quite 
general and basic properties of double waves. 

With this in mind and noting that Equation (7.9) is linear, with 

partial derivatives of the second order, we shall write immediately the 

corresponding equation of its characteristics: 

Hence it follows that along the characteristics themselves we have 

Tl* dw, dwl = 0 (7.10) 

brining this equation in an expanded form, we find, according to (2,8) 

kc 7/+ dw, drq = UH dwk 

Taking into account (2.‘7), (2.4) and (1.5), we obtain 

dsrf/fdv$ f- (d~)z + (dv,)” =z -i_ ; dp = -& z (7.11) 

where the symbol ds means the differential of an arc of projection of 

the given characteristics in the usual three-dimensional vector space 

with Cartesian coordinates ul, v2, vg* In this manner, the result ob- 

tained allows us to formulate a basic theorem, which reveals a close con- 

nection between the structure of hodographs of double and simple waves. 

Theorem 3. On the surface of a hodograph of an arbitrary double wave 

the same "condition of combined motion" (7.11) holds along its character- 

istics, which imposes well-known restrictions (3.5) upon the freedom of 

choice of the hodograph line of a simple wave. 

BIBLIOGRAPHY 

1. Riemann, Pi., &er die Fortpflanzung ebener Luftwellen von endlicher 

Sc~wingungs~eit~, Abhund~. GGttinger Ges. Wiss. 1860. 

2. Meyer, Th., iber zweidimensionale Bewegungsvorg?inge in etnem Gas, das 
mit cberschallgeschwindigkeit St&t. Dissertation. G’dttingen, 

1908; Forsch. Ver. Deutsck. Ing. 62, 1908. 

3. Giese, J.H., Compressible flows with degenerate hodographs. Quart. 

Appt. Math. 9, 1951. 

4. Bonder, J., Application des ondes simples 2 la recherche des e’coule- 

ments compressibles, isentropigues. non stationnaires. Actes du IX 

Congres Intern. de Met. App 1. Vol. 3. 1956-1957. 



Tensor method in theory of ~onste~d~ spatial flows 1647 

5. Nikol’ skii, A-A,, Obobshchenie voln Rimana no sfnchai prostranstva 
(~eneral~~&t~o~ of Riemann waves to case of space). Sb. teoretich, 

rabot po aerodinamike, pp. 34-38. Oborongiz, 1957. 

6. Ianenko, N. N., Begushchie volny sistemy kvazilineinykh uravnenii 
(Traveling waves of a system of quasilinear equations). Dokl. Akad, 

Nauk SSSR VoI, 109, No. 1, pp. 44-42, 1956. 

T* Burnat t 811.. On the conditions of simpIe wave formation, Bull. Acad. 

Pofon. Sci. Vol. 7, Ha. 10, 1959; Rurnat, 1.. Simple waves in plans, 
nonsteady, compressible, inviscid and non-heat-conducting flow. 
ArchiaPum iaechaniki stosowanej Vol. 12. No, 1. 1960. 

8. Nikol’ skii, A.A, , 0 klasse adiabatic~eskik~ techenii. kotorye v pro- 
stranstve gadografa skorosti izobraehaiutsia poverkhnostiami (On a 
class of adiabatic flows, which in the space of the velocity hodo- 

graph are represented as surfaces). Sb. teoretich. tabot po aero- 

dinarike, PD. M-42. Oborongiz, 1957. 

9. R.vZhOV, 0.S. t 0 techeniiakh s ~~roz~denn~m godografom (On flaw with 
degenerate hodograph), WE Vol. 21, No. 4, 1957. 

10. Pogodin, Iu. 18. t Suchkov, V.A. and Ianenko, N,N., 0 begush~bikh val- 
nakh gazovoi dinamiki (on traveling waves of gasdynamics). Dokt. 

Akad. Nauk $$slt VOI. 119, NO, 3, 1958; &#f Vof. 22, NO. 2, 1956. 

11. Sidorov, A.F. and Ianenko, N. N., Nsust&nov~vshiesia pfaskie techeniia 
politropnogo gaza s priamolineinymi obrazuiushehimi (Nonsteady 
plane flows of a polytropic gas with straight characteristics). 
Izw. uuzou, Matenatika NO. 1, (8), 1959. 

12, Sidorov. A.F., 0 nestats~oaarnykh potentsial’nykh dvizheniiakh poli- 
trOpaOgo gaza s v~~~zh~e~~~~ godografom (On nonsteady potential 
flows of a polxtropic gas with degenerate ~odograph~. PM Vol. 23, 
No, 5. 1959. 

Trans tated by J.R.W. 


